Pesquise no google direto do blog ou no próprio blog
Google

segunda-feira, 15 de junho de 2009

Cientistas revertem evolução e devolvem barbatanas a peixe

CLAUDIO ANGELO
enviado especial da Folha de S.Paulo a Cold Spring Harbor (EUA)

Os criacionistas costumam dizer que Darwin está errado porque nunca viram uma espécie se transformar em outra. Pois cientistas americanos acabam de fazer quase isso: transformaram um peixe de água doce no seu ancestral marinho, revertendo a evolução.

A pesquisa, inédita, foi apresentada no último dia 27 nos EUA a uma plateia de cientistas pelo biólogo David Kingsley, da Universidade Stanford. Foi um dos pontos altos do 74º Simpósio de Cold Spring Harbor sobre Biologia Quantitativa.

O resultado culmina um esforço de 11 anos de Kingsley e seus colegas para decifrar o mais novo animal-modelo da biologia, o peixinho esgana-gata (Gasterosteus aculeatus).

O que os pesquisadores fizeram foi devolver a esgana-gatas de água doce, que habitam lagos nos EUA, um par de barbatanas pélvicas em forma de espinho. Essas estruturas estão nas populações marinhas do bicho, mas foram perdidas em algumas populações de lagos nos últimos 10 mil anos.

O grupo também devolveu aos peixes lacustres as placas ósseas externas que caracterizam os esgana-gatas marinhos, mas que igualmente se perderam na água doce.

Reversão

"Nós revertemos dois grandes traços morfológicos", disse Kingsley à Folha. "Ganho ou perda de um membro é um grande traço. É o tipo de coisa com base na qual os zoólogos classificam organismos em diferentes categorias."

Ambas estruturas são usadas para defesa dos esgana-gatas, que são refeição de diversos predadores no mar.

Os espinhos, na pelve e no dorso, ferem predadores de boca mole, como trutas. Em alguns dos lagos em que os peixinhos ficaram presos no fim da Era Glacial, porém, os maiores inimigos dos esgana-gatas são insetos. Eles agarram suas vítimas justamente pelos espinhos da pelve.

Onde há pressão de insetos e pouco cálcio na água, a evolução acabou por eliminar os espinhos. Quanto à armadura óssea, ela se perdeu em todos os esgana-gatas de água doce. "Isso dá mais flexibilidade e velocidade de nado", afirmou Kingsley. Restava descobrir de que forma isso aconteceu -o mecanismo molecular da perda- e, por fim, tentar emular a ação da seleção natural.

Modelo à espera

Kingsley decidiu estudar o esgana-gata em 1998. "Havia milhares de trabalhos sobre ele, mas ninguém havia feito sua genética molecular. Era um animal-modelo esperando para acontecer", recorda-se.

Os cientistas começaram coletando animais de várias populações de mar e de lago, com características diferentes (presença ou não de espinhos pélvicos ou armadura), e cruzando-os. Observando os traços em milhares de filhotes e analisando o seu DNA, mapearam os genes que respondiam por eles.

O gene que controla quase toda a formação dos espinhos pélvicos, por exemplo, foi identificado: era o Pitx1. Mas Kingsley e colegas ainda precisavam saber o que acontecia no gene para fazer a diferença entre a presença da pelve no animal marinho e sua ausência no esgana-gatas de água doce.

Para isso, eles sequenciaram o Pitx1 dos dois peixes. Aí veio a surpresa: "Não havia diferença alguma na parte codificante do gene", conta Kingsley. "Isso faz sentido, porque o Pitx1 está envolvido na formação da glândula pituitária e da mandíbula. Não dá para zoar com todas as funções de um gene desses."

O segredo estava nas sequências de DNA que não trazem a receita para a fabricação de nenhuma proteína (e que até algum tempo atrás eram consideradas mero "lixo" genético), mas que controlam a intensidade com que o gene se liga em certos tecidos e em certas fases do desenvolvimento.

Para descobrir que sequências eram essas, o grupo quebrou o DNA em pedacinhos e injetou cada pedacinho em um embrião de peixe para ver no que dava. A busca levou anos.

Finalmente, o time chegou à "região mágica" de controle. Os peixes de lago tiveram em sua evolução um trecho de DNA apagado que estava intacto nos ancestrais marinhos. O tamanho do bloco deletado variava entre as populações, mas a região era sempre a mesma.

A prova final foi feita por um aluno de Kingsley, Frank Chan: pegar o trecho de DNA do peixe marinho e injetá-lo no lacustre. "Ficamos maravilhados em ver que isso funciona", disse o biólogo. "A região de controle do Pitx1 do peixe marinho gera um peixe que tem uma estrutura pélvica de novo." O mesmo foi feito para a sequência reguladora do gene Ectodysplasin, que controla a armadura.

Abaixo as mariposas

"Esse é o mais belo exemplo demonstrando um mecanismo molecular de evolução que eu já vi", diz o geneticista brasileiro Marcelo Nóbrega, da Universidade de Chicago, que assistiu à palestra de Kingsley.

"A seleção natural que atuou sobre esses peixes pode agora ser explicada quimicamente, não apenas como uma abstração. Nossa geração foi apresentada à evolução usando como exemplo mariposas na Inglaterra. Nossos filhos provavelmente aprenderão com o trabalho de David Kingsley."

A pesquisa traz uma implicação intrigante: grandes transições evolutivas, como a perda ou o ganho de membros, podem ocorrer sem alterações na sequência de um gene e em um só passo --como aconteceu com os esgana-gatas--, e não por pequenas mutações, como prevê o darwinismo padrão.

"O quanto isso pode ser generalizado não dá para saber", diz Nóbrega. "Mas só o fato de Kingsley mostrar que grandes transições podem ocorrer já é interessante o suficiente."

domingo, 14 de junho de 2009

O Olho: Um órgão de altíssima… imperfeição

Depois de um longo período sem postagens neste blog, volto com um ótimo texto de Reinaldo José Lopes, no qual ele nos mostra que o olho não é essa "Brastemp" toda, não possui a tal perfeição apregoada pelos criacionistas, que a usam como argumento anti-evolucionismo.

Parece quase ingratidão desancar um órgão que normalmente presta tão excelentes serviços à nossa espécie, mas vamos direto ao ponto: o olho humano é, no máximo, um quebra-galho. Se tivesse sido projetado para uma feira de ciências, levaria nota 6, e olhe lá. Se fosse um novo gadget, destinado a competir com o iPhone, encalharia nas prateleiras. Apesar do seu funcionamento aparentemente azeitado, nosso olho está longe de ser perfeito, e a culpa de seus inúmeros “defeitos de fábrica” é do processo evolutivo complicado e tortuoso que o trouxe até aqui.

É irônico chegar a esse tipo de veredicto sobre nosso aparato visual, principalmente quando se considera que a suposta perfeição dele foi e continua sendo usada como argumento CONTRA a ideia de evolução por meio da seleção natural. Um órgão tão complexo e de funcionamento tão avançado, argumentam os críticos da evolução desde Darwin, jamais poderia ter sido “montado” passo a passo, mas só poderia ter sido projetado de uma vez por todas pela interferência direta de uma inteligência divina.

Deixemos de lado o fato de que o mundo pulula de criaturas com olhos bem mais simples que os nossos, as quais sobrevivem um bocado bem mesmo assim (e cujo aparato visual, aliás, pode muito bem servir de análogo para o que deu origem ao nosso, mais sofisticado). Vamos analisar apenas o design do nosso olho, esse suposto prodígio de complexidade e infalibilidade. Por que será que todos os modelos dele já saem de fábrica com um ponto cego?

Gambiarra
Porque o design do sistema captador de luz do nosso olho é, digamos, meio porco. A coisa toda está de ponta-cabeça, para começar. A informação luminosa vinda do ambiente externo é captada pelas células fotorreceptoras (receptoras de luz), que estão situadas na camada MAIS FUNDA da nossa retina e depois passam esses dados para o cérebro através do nervo óptico. Não seria muito mais fácil e lógico se elas estivessem no topo da retina, de maneira a captar diretamente a luz? Seria, mas a luminosidade precisa atravessar várias camadas de células nervosas e vasos sanguíneos para finalmente ser “lida”.

Pior ainda: o fato de o corpo das células fotorreceptoras estar “de costas” para a luz faz com que as fibras nervosas oriundas delas se juntem mais em cima, formando o nervo óptico, o qual precisa passar por um BURACO na retina no seu caminho rumo ao cérebro. É justamente esse buraco que forma o ponto cego na visão de vertebrados como nós – um ponto cego que precisa ser corrigido “virtualmente” pelo cérebro quando este interpreta as informações visuais captadas pelo olho.

Essa gambiarra cerebral seria totalmente desnecessária se o design do olho fosse mais “racional”. E temos exemplos vivos disso. São os cefalópodes – moluscos como o polvo e a lula, cujo olho é muito parecido com o nosso, mas cuja retina está organizada segundo boas normas de engenharia e tem as células receptoras de luz no topo, e não no fundo. Isso dispensa a necessidade de o nervo óptico abrir um rombo na retina dos polvos e das lulas.

A explicação para a diferença é uma só: trajetórias evolutivas distintas. O mais provável é que o ancestral dos vertebrados, que nos legou uma forma primitiva do que acabaria se tornando o nosso olho, fosse um bicho marinho pequeno e quase transparente, explica o médico Steven Novella, da Universidade Yale (EUA), em artigo para a revista científica de acesso livre “Evolution: Education and Outreach”.

Nas condições desse protovertebrado, a organização específica das camadas da retina pouco importava. Por isso, a ordem não muito razoável acabou se fixando nos descendentes dele, da mesma maneira que a ordem mais “lógica” se tornou o padrão entre os descendentes dos primeiros cefalópodes. O problema é que, nos dois casos, a disposição das camadas da retina virou um esquema fixo do desenvolvimento embrionário, que o organismo não mais conseguia reverter. Ora, não era possível simplesmente “demolir” tudo e recomeçar do zero. A evolução do olho teve de prosseguir usando as matérias-primas à mão, aperfeiçoando onde dava e não mexendo onde não dava, mais ou menos como quem constrói um puxadinho quando acabou o espaço da casa.

Doenças da evolução
Para Novella, é justamente esse modelo evolutivo do puxadinho que explica uma série de problemas de saúde ligados ao design emporcalhado da visão. Exemplo número 1: perda de acuidade visual associada à diabetes crônica, a chamada retinopatia diabética. O que ocorre é que os vasos sanguíneos que alimentam a retina ficam em cima dela. Nos casos crônicos de diabetes, ocorre uma falta de oxigenação nesses vasos. Para compensar, a retina estimula o crescimento de mais deles – o que faz com que os vasos sanguíneos simplesmente fiquem na frente da retina, atrapalhando a visão. Seria muito mais lógico que a irrigação sanguínea viesse DE TRÁS da retina. Seria, mas não é o que acontece.

Exemplo número 2: descolamento da retina, que também pode causar cegueira. Você nunca vai achar um polvo com esse problema, porque as terminações nervosas (os chamados axônios) das células fotorreceptoras desse bicho ajudam a ancorar tais células firmemente nas camadas mais profundas da retina. Já a organização invertida da retina humana deixa tais terminações “no ar”, o que pode favorecer o descolamento.

Exemplo número 3: degeneração macular, a causa mais comum de cegueira no mundo. Trata-se de uma disfunção na mácula, a região da retina onde há a concentração mais densa de células fotorreceptoras. Acontece que a mácula só existe como uma forma de compensar a organização tosca da retina: é uma pequena área que está “limpa” de nervos e vasos sanguíneos, tornando-se central para a visão. Problemas nela levam a uma perda séria da precisão visual. De novo, polvos e lulas não precisam de mácula e, portanto, não sofrem de degeneração macular.

Músculos demais
Engana-se quem pensa que a retina invertida é a única grande falha de design no olho humano, diz Novella. Ainda mais sem-vergonha é a estrutura dos músculos que governam o movimento dos olhos. Primeiro, há mais músculos do que o necessário: são seis, enquanto três bastariam para todos os movimentos possíveis do globo ocular. Pior ainda, esses seis músculos NÃO são redundantes entre si: se houver falhas em qualquer um deles, o movimento fica tão prejudicado que o resultado é uma visão dupla ou outros problemas.

Bastaria que o número de músculos fosse reduzido para que o design se tornasse mais robusto, menos sujeito a falhas – afinal, há menos peças para “quebrar” ao longo do caminho. Mas tudo indica que o nosso olho é só uma versão modificada do olho de peixes primitivos, que tinham SETE músculos oculares (os cães ainda têm esse mesmo número, o qual também já foi registrado em alguns poucos indivíduos humanos). A nossa bagagem histórica, mais uma vez, acaba pesando e causando problemas.

Eis, portanto, o paradoxo da evolução de órgãos complexos, que pode ser estendido, em maior ou menor grau, para qualquer característica humana ou animal. O “design” é sempre de baixo para cima, e nunca de cima para baixo. A reciclagem e o pão-durismo imperam: estamos falando de puxadinhos, e não do Empire State. E, no entanto, essa fraqueza é um bocado forte; do simples e do não-guiado emerge a variedade, a beleza e a adaptação a todo tipo de ambiente. De certa maneira, é uma forma de “arte” espontânea e colaborativa que já dura 4 bilhões de anos.

Fonte: Coluna Visões da Vida - Reinaldo José Lopes
http://colunas.g1.com.br/visoesdavida/2009/06/13/um-orgao-de-altissima-imperfeicao/

Blog Directory BlogRankings.com